A REACTIVE AND VERSATILE TRIRHENIUM CARBONYL CLUSTER OBTAINED BY OXIDATION OF $\left[\operatorname{Re}_{3}(\mu-\mathrm{H})_{4}(\mathrm{CO})_{10}\right]^{-}$. SYNTHESIS, X-RAY CHARACTERIZATION AND REACTIVITY OF $\operatorname{Re}_{3}(\mu-\mathrm{H})_{3}(\mathrm{CO})_{10}\left(\mathrm{NCMe}_{2}\right.$

GIANFRANCO CIANI*, ANGELO SIRONI,
Centro di Studio sulla Sintesi e la Struttura dei Composti dei Metalli di Transizione nei Bassi Stati di Ossidazione del C.N.R., Via G. Venezian 21, 20133 Milano (Italy)

GIUSEPPE D'ALFONSO ${ }^{\star}$, PIERFRANCESCO ROMITI and MARIA FRENI
Dipartimento di Chimica Inorganica e Metallorganica e Centro C.N.R., Via G. Venezian 21, 20133 Milano (Italy)
(Received May 23rd, 1983)

Summary

Oxidation of $\left[\mathrm{Re}_{3}(\mu-\mathrm{H})_{4}(\mathrm{CO})_{10}\right]^{-}$with $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}$ in acetonitrile gives the new complex $\mathrm{Re}_{3}(\mu-\mathrm{H})_{3}(\mathrm{CO})_{10}(\mathrm{NCMe})_{2}$. This contains a triangle of metal atoms with the edges bridged by the hydrides (mean Re-Re $3.266 \AA$). The acetonitrile ligands, bound to two metals in a trans-diaxial manner, are easily replaced, giving a variety of derivatives.

The unsaturated cluster anion $\left[\mathrm{Re}_{3}(\mu-\mathrm{H})_{4}(\mathrm{CO})_{10}\right]^{-}(\mathrm{I})$ is a very reactive compound, owing to the hydridic nature of the hydrogens bridging the short (formally double) $\operatorname{Re}-\operatorname{Re}$ bond [1]. Nevertheless it does not react readily with two-electron donor ligands ($\mathrm{CO}, \mathrm{PR}_{3}$ or unsaturated hydrocarbons), unlike the related triosmium compound $\mathrm{Os}_{3}(\mu-\mathrm{H})_{2}(\mathrm{CO})_{10}$, probably because of its anionic charge. This seemed to rule out the possibility that I could furnish an entry to the field of organic chemistry of trirhenium clusters, such as that well developed for triosmium clusters [2]. Attempts were made therefore, to obtain a neutral reactive derivative of compound I. Previous studies showed that most of its reactions follow eq. 1, where XY represents
$\left[\operatorname{Re}_{3}(\mu-\mathrm{H})_{4}(\mathrm{CO})_{10}\right]^{-}+\mathrm{XY} \rightarrow\left[\mathrm{Re}_{3}(\mu-\mathrm{H})_{3}(\mu-\mathrm{Y})(\mathrm{CO})_{10}\right]^{-}+\mathrm{HX}$
an acid [3] or a halogen molecule [4]. This process formally involves two processes: (i) H abstraction (as H^{-}) by an electrophilic X^{+}species, (ii) coordination, in bridging position, of the nucleophilic Y^{-}species. The two processes
are concerted, since the first one would lead to a "super-unsaturated" unit (44 valence electrons) [$\mathrm{Re}_{3}(\mu-\mathrm{H})_{3}(\mathrm{CO})_{10}$], whose existence is very speculative (an isoelectronic " $\mathrm{Os}_{3}(\mathrm{CO})_{10}$ " unit has been suggested as a reactive intermediate in many reactions of $\mathrm{Os}_{3}(\mu-\mathrm{H})_{2}(\mathrm{CO})_{10}$ [5]). However, on treating compound I with a strong acid having a non-coordinating anion (such as $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}$) in acetonitrile solution, we succeeded in isolating the $\left[\mathrm{Re}_{3}(\mu-\mathrm{H})_{3}(\mathrm{CO})_{10}\right.$] unit in a form stabilized by two weakly bonded solvent molecules, $\mathrm{Re}_{3}(\mu-\mathrm{H})_{3}(\mathrm{CO})_{10}(\mathrm{NCMe})_{2}$ (II), which might represent the desired neutral reactive species suitable for further reactions with organic systems, as in the case of the related compound $\mathrm{Os}_{3}(\mathrm{CO})_{10}(\mathrm{NCMe})_{2}$ [5].

The reaction (eq. 2) is almost quantitative. The evolved H_{2} was identified

$$
\begin{align*}
{\left[\mathrm{Re}_{3}(\mu-\mathrm{H})_{4}(\mathrm{CO})_{10}\right]^{-}+} & \mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}+2 \mathrm{MeCN} \rightarrow \\
& \mathrm{Re}_{3}(\mu-\mathrm{H})_{3}(\mathrm{CO})_{10}(\mathrm{NCMe})_{2}+ \tag{2}\\
& \mathrm{H}_{2}+\mathrm{CF}_{3} \mathrm{SO}_{3}^{-}
\end{align*}
$$

by GLC. Colourless crystals of the compound were investigated by X-ray analysis*.

The structure of the compound, of idealized C_{2} symmetry, consists of an almost equilateral triangle of rhenium atoms, bearing ten terminal carbonyl groups and two terminal acetonitrile molecules, as illustrated in Fig. 1. The two solvent molecules are bound in axial direction, on opposite sides of the Re_{3} plane. The hydride ligands, not directly located, are assumed to be bridging on the metal-metal edges, on the basis of the values of the Re-Re bond lengths and the stereochemistry of the other ligands.

The Re ${ }^{--}$Re hydrogen-bridged bonds are in the range $3.251(2)-3.285(2) \AA$ (overall mean value for the two independent molecules $3.266 \AA$), comparable with many similar interactions, e.g. $3.262 \AA$ (mean value) in $\mathrm{Re}_{3}(\mu-\mathrm{H})_{3}(\mathrm{CO})_{11}-$ $\left(\mathrm{PPh}_{3}\right)$ [6] and $3.292 \AA$ (mean value) in $\mathrm{Re}_{3}(\mu-\mathrm{H})_{3}(\mathrm{CO})_{10}(\mathrm{Py})_{2}$ [7].

The mean values of the $\mathrm{Re}-\mathrm{C}$ bond lengths within the $\operatorname{Re}(\mathrm{CO})_{4}$ and the $\operatorname{Re}(\mathrm{CO})_{3}$ moieties are 1.92 and $1.87 \AA$, respectively. The overall mean $\mathrm{C}-\mathrm{O}$ bond length is $1.16 \AA$. The acetonitrile molecules are coordinated in an essentially linear way ($\mathrm{Re}-\mathrm{N}-\mathrm{C} 170(3)-179(3)^{\circ}$), with $\mathrm{Re}-\mathrm{N}$ bond interactions in the range $2.09(5)-2.16(4) \AA$ (mean $2.13 \AA$), comparable with the corresponding interaction in $\left[\mathrm{ReBr}_{4}(\mathrm{NO})(\mathrm{NCMe})\right]^{-}(2.153(11) \AA)$ [8] and somewhat shorter than the $\mathrm{Re}-\mathrm{N}(\mathrm{py})$ mean bond (2.22 \AA) in $\mathrm{Re}_{3}(\mu-\mathrm{H})_{3}(\mathrm{CO})_{10}(\mathrm{Py})_{2}$. The mean bond lengths within the MeCN molecules are: N-C $1.15 \AA$ and C-C $1.52 \AA$.

As expected, the solvent molecules are rather labile and can be easily replaced, (within a few hours) by a variety of ligands at room temperature. Reactions 3-10 are so far investigated.

[^0]

Fig. 1. A view of one of the two independent molecules $\mathrm{Re}_{3}(\mu-\mathrm{H})_{3}(\mathrm{CO})_{10}(\mathrm{NCMe})_{2}$, with the postulated hydridic atoms positions.

TABLE 1
IR AND NMR DATA

Compound	$\begin{aligned} & \operatorname{IR}\left(\mathrm{cm}^{-1}\right)^{a} \\ & \nu(\mathrm{C}-\mathrm{O}) \end{aligned}$	${ }^{1} \mathbf{H}$ NMR ${ }^{\text {b }}$			
		Proton resonance (τ)	Relative intensity	Fine structure	Assignment
$\underset{\text { (II) }}{\mathrm{Re}_{3}(\mu-\mathrm{H})_{3}(\mathrm{CO})_{10}(\mathrm{NCMe})_{2}}$	2098mw, 2039sh,	7.71	6	Singlet	CH_{3}
	2028vs, 2000sh,	22.0	1	Singlet	Re-H-Re
	1991s, 1961m,	24.52	2	Singlet	Re-H-Re
	1938s, 1921m.				
$\begin{gathered} \mathrm{Re}_{3}(\mu-\mathrm{H})_{3}(\mathrm{CO})_{10}\left(\mathrm{PPh}_{3}\right)_{2} \\ (\mathrm{~V}) \end{gathered}$	2095m, 2028vs,	2.50	30	Multiplet	$\mathrm{C}_{6} \mathrm{H}_{5}$
	2000s, 1987 ms ,	25.07	2	Doublet	$\mathrm{Re}-\mathrm{H}-\mathrm{Re}$
	$1957 \mathrm{ve}, 1935 \mathrm{vs}$,			(J (P-H)	
	1927s, 1910 s .			15.4 Hz)	
		25.93	1	Triplet	$\mathrm{Re}-\mathrm{H}-\mathrm{Re}$
				($\mathrm{J}(\mathrm{P}-\mathrm{H}$)	
				7.8 Hz)	
$\begin{gathered} {\left[\mathrm{Re}_{3}(\mu-\mathrm{H})_{3}(\mu-\mathrm{OMe})(\mathrm{CO})_{10}\right]^{-}} \\ \text {(VIII) } \end{gathered}$	2096w, 2020m,	6.13	3	Singlet	OCH_{3}
	$2000 \mathrm{vs}, 1985 \mathrm{sh}$,	19.65	1	Singlet	Re-H-Re
	$1957 \mathrm{vs}, 1935 \mathrm{vs}$,	23.84	2	Singlet	Re-H-Re
	1888s.				
$\mathrm{Re}_{3}(\mu-\mathrm{H})_{3}(\mathrm{CO})_{11}(\mathrm{NCM})$	$2113 \mathrm{mw}, 2090 \mathrm{mw}$,				
	$2038 \mathrm{~m}, 2022 \mathrm{~s},$	24.56	2	Singlet	$\mathrm{Re}-\mathrm{H}-\mathrm{Re}$
	2003vs, 1971 m , $1936 \mathrm{~m}, 1921 \mathrm{ch}$.	27.26	1	Singlet	$\mathbf{R e - H - R e}$

[^1]

In the case of the reaction with CO , at atmospheric pressure only the monosubstituted derivative is formed: this is another interesting species, able to give many derivatives of the type $\operatorname{Re}_{3}(\mu-\mathrm{H})_{3}(\mathrm{CO})_{11} \mathrm{~L}$. For example, by reaction with Γ, the known $\left[\operatorname{Re}_{3}(\mu-\mathrm{H})_{3} \mathrm{I}(\mathrm{CO})_{11}\right]^{-}$[11] is readily formed. Compounds II and IX thus provide an easy and selective route to a number of derivatives of $\mathrm{Re}_{3}(\mu-\mathrm{H})_{3}(\mathrm{CO})_{12}$, offering an alternative to the direct syntheses which require more drastic conditions and generally lead to complex structure of products. Furthermore compound II allows the synthesis of anionic species of the type $\left[\mathrm{Re}_{3}(\mu-\mathrm{H})_{3}(\mu-\mathrm{X})(\mathrm{CO})_{10}\right]^{-}$(as the methoxo derivative VIII), which cannot be obtained directly by reaction of compound I with HX, unless HX is markedly acidic.

We thank Italian C.N.R. for financial support.

References

1 G. Ciani, G. D'Alfonso, M. Freni, P. Romiti, A. Sironi and A. Albinati, J. Organomet. Chem., 136 (1977) C49.

2 See for instance A.P. Humphries and H.D. Kaesz, Progr. Inorg. Chem., 25 (1978) 145 and refs. therein.
3 (a) G. Ciani, G. D'Alfonso, M. Freni, P. Romiti and A. Sironi, J. Organomet. Chem., 226 (1982) C31; (b) T. Beringhelli, G. Ciani, G. D'Alfonso, A. Sironi and M. Freni, J. Organomet. Chem., 233 (1982) C46.
4 G. Ciani, G. D'Alfonso, P. Romiti, A. Sironi and M. Freni, Inorg. Chem., in press.
5 M. Tachikawa and J.R. Shapley, J. Organomet. Chem., 124 (1977) C19.
6 C. Wei, L. Garlaschelli, R. Bau and T.F. Koetzle, J. Organomet. Chem., 213 (1981) 63.
7 G. Ciani, G. D'Alfonso, M. Freni, P. Romiti and A. Sironi, J. Organomet. Chem., 186 (1980) 353.

8 G. Ciani, D. Giusto, M. Manassero and M. Sansoni, J. Chem. Soc. Dalton, (1975) 2156.
9 D.W. Prest, M.J. Mays, P.R. Raithby and A.G. Orpen, J. Chem. Soc. Dalton Trans., (1982) 737.
10 D.K. Huggins, W. Fellmann, J.M. Smith and H.D. Kaesz, J. Am. Chem. Soc., 86 (1964) 4841.
11 G. Ciani, G.D'Alfonso, M. Freni, P. Romiti and A. Sironi, J. Organomet. Chem., 220 (1981)C11.

JOURNAL OF ORGANOMETALLIC CHEMISTRY, VOL. 254

AUTHOR INDEX

Ackermann, K., C21
Akita, M., 13
Alfonso, G.D', C37
Alt, H.G., C21
Ammendola, P., 389
Armstrong, R.L., 53
Astakhova, N.M., 345
Avakyan, V.G., 173
Bailey, W.I. Jr., 53
Baskar, A.J., 149
Beauchamp, A.L., 283
Beletskaya, I.P., 189
Belsky, V.K., 189
Benn, R., C11
Bickelhaupt, F., C33
Boaretto, A., 293
Bock, H., 219
Bolesławski, M., 159
Borisova, I.V., 189
Briant, C.E., C18
Brintzinger, H.H., 69
Bruce, M.I., 361
Bueno, C., 89
Bulychev, B.M., 167
Bung, I., 23
Cano, F.H., 249
Cano, M., 325
Carmona, D., 249
Casey, C.P., 333
Ceccon, A., 199, 207
Cheng, H.-S., 43
Churchill, M.R., 89
Ciajolo, M.R., 389
Ciani, G., C37
Constable, E.C., 105
D'Alfonso, G., C37
Dammel, R., 219
Danowski, F., C11
Davidson, J.L., C6
Davies, S.G., C29
Denisovitch, L.I., 313
Dinjus, E., C33

Eaborn, C., 273
Engelhardt, G., C1
Erofeev, A.B., 167
Espinet, P., 371
Esteruelas, M.A., 249
Fañanás, F.J., 267
Filippou, A.C., C21
Fischer, E.O., C21
Foces-Foces, C., 249
Fornies, J., 371
Franken, S., 33
Freni, M., C37
Friedrichs, E., 23
Gambaro, A., 199, 207, 293
Garcia-Blanco, S., 249
Geoffroy, G.L., 89
Guerra, M.A., 53
Gusel'nikov, L.E., 173
Gusev, A.I., 167
Hall, K.P., C18
Hartley, F.R., 119
Herberich, G.E., 143, 317
Herrmann, W.A., 219
Hessner, B., 317
Hidai, M., 75
Hiraki, K., 381
Hoberg, H., 267
Hooker, R.H., C25
Hwang, T.-L., 43
Ikariya, T., 83
Itoh, T., 381
Jansen, A., 23
Jenneskens, L.W., C33
Jin, D.-M., 75
Kalinin, V.N., 127
Kerber, R.C., 131
Kirillova, N.I., 167
Kirpichenko, S.V., 173
Knaap, T.A. van der, C33

Kolosova, N.D., 189
Komiya, S., 83
Koridze, A.A., 345
Krapivin, A.M., 243
Kriechbaum, G.W., 219
Krivykh, V.V., 313
Kuhn, N., C15
Kumada, M., 13
Lagow, R.J., 53
Lal, K., 193
Lalinde, E., 371
Latour, S., 283
Lauteschläger, S., 59
Laviron, E., 111
Leckey, N.T., 193
Lehmkuhl, H., C11
Lewis, J., 105
Liu, C.-S., 43
Lobkosvky, E.B., 167
Lobo, M.A., 325
Lukehart, C.M., 149
McPherson, H.D., 261
Maercker, A., 1
Mahmoud, K.A., C25
Manojlovic-Muir, L., C6
Mansour, A.I., 273
Marton, D., 293
Meeuwissen H.J., C33
Mikaya, A.I., 339
Miles, W.H., 333
Milewski-Mahrla, B., 59
Minato, H., 83
Mingos, D.M.P., C18
Moise, C., 111
Moody, D.C., 305
Mugnier, Y., 111
Muir, K.W., C6
Murray, S.G., 119
Mynott, R., C11
Nametkin, N.S., 173, 243
Nekhaev, A.I., 339
Nicholson, B.K., 361

[^0]: *Crystal data. $\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{~N}_{2} \mathrm{O}_{10} \mathrm{Re}_{3}$, Mol.wt. 923.8, orthorhombic, space group Pbca (No. 61), with $a 12.948(3), b 16.718(4)$ and $c 40.279(11) A, D_{c} 2.81 \mathrm{~g} \mathrm{~cm}^{-3}$ for $Z=16$. The structure was solved by Patterson and Fourier methods, on the basis of 1720 significant counter data, and refined by full-matrix least-squares up to a current R value of 0.042 . There are two independent molecules in the asymmetric unit. (The atomic coordinates for this work are available on request from the Director of the Cambridge Crystallographic Duta Centre, University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW (Great Britain). Any request should be accompanied by a full literature citation for this communication.)

[^1]: ${ }^{a}$ IR spectra were recorded on a Perkin-Flmer 781 spectrophotometer, in toluene solution (II and IX), in KBr disk (V) and in dichloromethane solution (VIII). ${ }^{b}$ NMR spectra were recorded on a Bruker-80 in CDCl_{3} solution (II, V, and IX) and in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ (VIII).

